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A solution is given for one-dimensional  adiabat ic  turbulent flow of a compressible gas in a cyl indricaI  
tube, taking into account variat ion of the  Re number along the tube and the influence of compressibi l i ty 
on the friction coeff ic ient .  The solution is compared with formulas derived in [1] and [2]. 

Adiabat ic  flow of a gas in a cyl indr ical  tube (one-dimensional  model) is described by the set of equations 

dp + p ~dw + ( 9 w2 dx =0 ,  
2 D 

T~ 1 k+lk--1)') const, p=?RT, (1) 

G = p wF = c o n s t ,  

from which it is easy to obtain the change of re la t ive  veloci ty  X = a j c t .  with the distance along the tube x and the fr ic-  
t ion coefficient  ~ [1]: 

In regions of subsonic gas flow the influence of compressibi l i ty of the gas on the friction coeff icient ,  and the 
change of Re number along the tube length can be neglected in the solution of (2). At supersonic gas veloci t ies  both 
these factors have an appreciable  influence on the nature of the gas flow along the tube.  

Reference [2] gives a solution of (2) for zero heat  transfer across the walls, taking into account the influence of 

the Mach number on the friction coefficient  in accordance with [8]. Al lowance for the influence of the Mach number 
M on the coefficient  ~ in [3] was made in terms of local  values of Re. In [2], however, variat ion of Re along the tube 
was neglec ted ,  

It is easy to show that when the Mach number varies from 5 to 1, the Re number ca lcula ted  from the thermody-  
namic  tempera ture  may increase by approximate ly  a factor of three.  Consequently the local  friction coefficient  also 
changes appreciably .  

Since pea = const for a channel Of constant section, variat ion of Re number along the length of the tube occurs 

only as a result of change in dynamic  viscosity with change in tempera ture .  For s impl ic i ty  of analysis, a power law de-  
pendence of the dynamic  viscosity on temperature  will  be assumed: 

(3) 

The local  friction coeff ic ient  for turbulent flow may be written, in conformity with [3], in the form 

~,=~,~ (1 k+Ik--1 k~) ~ (4) 

where the friction coeff icient  for flow of an incompressible  fluid in a cy l indr ica l  channel is given by 

~H = 0.178 Re -~ (5) 

which is in good agreement  with Nikuradze's formula in the range Re = 5 �9 104 -- 106. 

Since the quantity g varies along the tube, we shall  express i t  in terms of the value of the friction coeff icient  at 

the beginning of the tube g t, taking into account relations ( 3 ) - ( 5 ) .  
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Substituting (6) in (2), we obtain 

k ~ 1 "x - o .  ts / 

k - - I  ,,-0.1s a / - /  
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"~0.65...._ 
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k 1 )3) ' .  
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where 

k ReT ~ ( 1 A = 0 " 1 7 8 k +  i .. 
k- -  1 X~'~ -~ 

] k + l  

The integral of (7) for a given Re I value has the form �9 
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+ 2 ~ ~. lx .  (8) 

Fig. 1 gives the results of calculations based on (8) for k = 1.4, k t = 2.2 (M 1 = 4. 56). It is seen from the graph 
that neglecting the variation of Re along the tube leads to an overestimate of X atong the whole tube, the overestimate 
being the greater, the greater the values of X 1 and R~ in the initial flow. 

k§ 

[( k - - 1  .o~ 1/a k - -  1 ),2 4- 
k 4 ~ l  ~'7) 1 k + l  

1 + 
k +  k- l -1  

?J! + 2 = ~.,Xcr. (9) 

k+lk--lX~):/'X-2 (1 

The critical tube length ~cr is given by 
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Fig. 1. Variation of X along tube: 
a-according to (8); b - I l l ;  e-J2]; 
1-for Re = 105 ; 2-106 

Fig. 2 shows ~cr as a function of Re at the tube entrance. It is clear that for a given X 1, as Re t increases, the 
length of tube with supersonic flow grows considerably. 
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One of the basic measured parameters in exper imental  investigations of the adiabat ic  flow of gases in tubes is the 
static pressure distribution along the tube.  The re la t ive  pressure for an arbitrary tube section is given in [1] in the form 

1 

" - i l  k _  k _ ,  <I0, 
P o l  7, , k n  t- 1 k +  1 ' 

where P0I is the stagnation pressure at the tube inlet section. 

Fig. 3 gives the results of calculations based on (10), taking (8) into account.  
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Fig.  2. Cri t ical  tube length as a func- 
t ion of X: 1,2,  a, b, c -  see Fig, 1. 

The graph shows that,  for a given X 1, the curve of var ia -  
t ion of static pressure along the tube, ca lcula ted in accordance 
with (8) and (10), is steeper than that from [2], i . e . ,  change 
of Re along the tube leads to a sharper rise in static pressure. 
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Fig.  3, Variat ion of pressure along tube 

f o r k  I =  2.2:  1,2, a, b, c - s e e  Fig.  1. 

NOTATION 

p - p r e s s u r e ;  p--density;  t o - v e l o c i t y ;  a . - c r i t i c a l  veloci ty;  X = w/c~ . - r e t a t i ve  veloci ty;  T - t h e r m o d y n a m i c  t e m -  

perature; T0-s tagna t ion  temperature ;  k - a d i a b a t i c  index; G - m a s s  flow rate; x - f l o w  coordinate along tube axis; D -  

- i .  d. of tube; g - f r i c t i o n  coefficient;  #l--dynamic viscosity. 
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